Чтобы создать своего робота, необязательно получать высшее или читать массу . Достаточно воспользоваться пошаговой инструкцией, которую предлагают мастера робототехники на своих сайтах. В Интернете можно найти много полезной информации, посвящённой разработке автономных роботизированных систем.

10 ресурсов для начинающего робототехника

Информация на сайте позволяет самостоятельно создать робота со сложным поведением. Здесь можно найти примеры программ, схемы, справочные материалы, готовые примеры, статьи и фотографии.

Новичкам на сайте посвящён отдельный раздел. Создатели ресурса делают немалый упор на микроконтроллеры, разработку универсальных плат для робототехники и пайку микросхем. Здесь также можно найти исходные коды программ и множество статей с практическими советами.

На сайте есть специальный курс «Шаг за шагом», в котором детально описан процесс создания простейших BEAM-роботов, а также автоматизированных систем на основе микроконтроллеров AVR.

Сайт, где начинающие создатели роботов смогут найти всю необходимую теоретическую и практическую информацию. Здесь также размещается большое количество полезных тематических статей, обновляются новости и можно задать вопрос опытным робототехникам на форуме.

Данный ресурс посвящён постепенному погружению в мир сотворения роботов. Начинается всё с познания Arduino, после чего начинающему разработчику рассказывают о микроконтроллерах AVR и более современных аналогах ARM. Подробные описания и схемы очень доступно объясняют, как и что делать.

Сайт о том, как сделать BEAM-робота своими руками. Здесь есть целый раздел, посвящённый основам, также приведены логические схемы, примеры и т. д.

На этом ресурсе очень доходчиво расписано, как самостоятельно создать робота, с чего начать, что нужно знать, где искать информацию и необходимые детали. Сервис также содержит раздел с блогом, форумом и новостями.

Огромнейший живой форум, посвящённый созданию роботов. Здесь открыты темы для новичков, рассматриваются интересные проекты и идеи, описываются микроконтроллеры, готовые модули, электроника и механика. А главное - можно задать любой вопрос по роботостроению и получить развёрнутый ответ от профессионалов.

Ресурс робототехника-любителя посвящён в первую очередь его собственному проекту «Самодельный робот». Однако здесь можно найти очень много полезных тематических статей, ссылок на интересные сайты, узнать о достижениях автора и обсудить различные конструкторские решения.

Аппаратная платформа Arduino является наиболее удобной для разработки роботизированных систем. Информация сайта позволяет быстро разобраться в этой среде, освоить язык программирования и создать несколько несложных проектов.

Выбор микроконтроллера для создания вашего робота. Сначала нужно разобраться с понятием, что такое микроконтроллер и что он делает?

Микроконтроллер — это вычислительное устройство, способное выполнять программы (то есть последовательность инструкций).

Он часто упоминается как “мозг” или “центр управления” робота. Как правило, микроконтроллер отвечает за все вычисления, принятие решений и коммуникации.

Для того, чтобы взаимодействовать с внешним миром, микроконтроллер имеет ряд штырей или выводов для электрического распознавания сигнала. Так сигнал может быть включен на максимум (1/С) или минимум (0/выкл) с помощью инструкции программирования. Эти выводы также могут быть использованы для считывания электрических сигналов. Они поступают с датчиков или других приборов и определяют, являются сигналы высокими или низкими.

Большинство современных микроконтроллеров может также измерять напряжение аналоговых сигналов. Это сигналы, которые могут иметь полный диапазон значений вместо двух четко определенных уровней. Происходит это с помощью аналогового цифрового преобразователя (АЦП). В результате микроконтроллер может присвоить сигналу числовое значение в виде аналогового напряжения.Это напряжение не является ни высоким, ни низким и, как правило, находится в диапазоне 0 — 10 вольт.

Что может делать микроконтроллер?

Хотя микроконтроллеры могут показаться довольно ограниченными, на первый взгляд, многие сложные действия можно выполнять, используя контакты высокого и низкого уровня сигнала для программирования алгоритма. Тем не менее создавать очень сложные алгоритмы, такие как интеллектуальное поведение или очень большие программы, может быть просто невозможно для микроконтроллера из-за ограниченных ресурсов и ограничения в скорости.

Например, для того, чтобы заставит мигать свет, можно запрограммировать повторяющуюся последовательность. Так микроконтроллер включает высокий уровень сигнала, ждет секунду, превращает его низкий, ждет еще секунду и сначала. Свет подключен к выходному контакту микроконтроллера и в циклической программе будет мигать бесконечно.


Аналогичным образом, микроконтроллеры могут быть использованы для контроля других электрических устройств. В первую очередь таких как приводы (при подключении к контроллеру двигателя), устройства хранения (например, карты SD), WiFi или bluetooth-интерфейсы и т. д. Как следствие этой невероятной универсальностью, микроконтроллеры можно найти в повседневной жизни.

Практически в каждом бытовом приборе или электронном устройстве используется, по крайней мере, один микроконтроллер. Хотя часто используется и несколько микроконтроллеров. Например, в телевизорах, стиральных машинах, пультах управления, телефонах, часах, СВЧ-печах и многих других устройствах.

В отличие от микропроцессоров (например, центральный процессор в персональных компьютерах), микроконтроллер не требует периферийных устройств. Таких как внешняя оперативная память или внешнее устройство хранения данных для работы. Это означает, что хотя микроконтроллер может быть менее мощным, чем их коллеги ПК. Почти всегда разработка схем и продуктов, основанных на микроконтроллерах значительно проще и дешевле.Потому что требуется очень мало дополнительных аппаратных компонентов.

Важно отметить, что микроконтроллер может выдавать только очень небольшое количество электрической энергии через свои выходные контакты. Это означает, что к микроконтроллеру не получиться подключить мощный электродвигатель, соленоид, большое освещение, или любую другую большую нагрузку напрямую. Попытка сделать это может вывести контроллер из строя.

Какие существуют более специализированные функции микроконтроллера?

Специальное оборудование, встроенное в микроконтроллеры позволяет этим устройствам сделать больше, чем обычный цифровой ввод/вывод, базовые расчеты и принятие решений. Многие микроконтроллеры с готовностью поддерживает наиболее популярные протоколы связи, такие как UART (RS232 или другой), SPI и I2C. Эта функция невероятно полезна при общении с другими устройствами, такими как компьютеры, датчики, или другие микроконтроллеры.

Хотя эти протоколы можно реализовать вручную, всегда лучше иметь выделенное встроенное оборудование, которое заботится о деталях. Это позволяет микроконтроллеру сосредоточиться на других задачах и обеспечивает чистоту программы.


Аналого-цифровые преобразователи (АЦП), используются для преобразования аналоговых сигналов напряжения в цифровые. Там количество пропорционально величине напряжения, и это число может затем использоваться в программе микроконтроллера. Для того, чтобы выходное промежуточное количество энергии отличается от высокого и низкого, некоторые микроконтроллеры имеют возможность использовать широтно-импульсную модуляцию (ШИМ). Например, этот способ позволяет плавно изменять яркость свечения светодиода.

Наконец, в некоторые микроконтроллеры интегрирован стабилизатор напряжения. Это достаточно удобно, так как позволяет микроконтроллеру работает с широким диапазоном напряжения. Поэтому вам не требуется обеспечивать необходимые значения напряжений. Это также позволяет легко подключать различные датчики и другие устройства без дополнительного внешнего регулируемого источника питания.

Аналоговые или цифровые?

Какие нужно использовать входные и выходные сигналы зависит от поставленной задачи и условий. Например, если у вас стоит задача просто что-то включить или выключить, то вам достаточно чтобы сигнал на входном контакте микроконтроллера был цифровой. Двоичное состояние переключателя 0 или 1. Высокий уровень сигнала может быть 5 вольт, а низкий 0. Если же вам нужно измерить, например, температуру, то нужен аналоговый входной сигнал. Далее АЦП на микроконтроллере интерпретирует напряжение и преобразует его в числовое значение.


Как программировать микроконтроллеры?

Программирование микроконтроллеров стало более простым благодаря использованию современных интегрированных сред разработки IDE с полнофункциональными библиотеками. Они легко охватывают все наиболее распространенные задачи и имеют много готовых примеров кода.

В настоящее время микроконтроллеры могут быть запрограммированы на различных языках высокого уровня. Это такие языки как C, C++, С#, Ява, Python, Basic и другие. Конечно, всегда можно написать программу на ассемблере. Хотя это для более продвинутых пользователей с особыми требованиями (с намеком на мазохизм). В этом смысле, любой должен быть в состоянии найти язык программирования, который лучше всего соответствуют его вкусу и предыдущему опыту программирования.

Программировать микроконтроллеры становится еще проще, так как производители создают графические среды программирования. Это пиктограммы, которые содержат в себе несколько строк кода. Пиктограммы соединяются друг с другом. В результате создается программа визуально простая, но содержащая в себе большое количество кода. Например, одно изображение может представлять управление двигателем. От пользователя требуется только разместить пиктограмму там, где необходимо и указать направление вращения и обороты.


Разработанные микроконтроллерные платы достаточно удобны в эксплуатации. И их проще использовать долгое время. Они также обеспечивают удобные питание от USB и интерфейсы программирования. Следовательно, есть возможность подключаются к любому современному компьютеру.

Почему не использовать стандартный компьютер?

Очевидно, что микроконтроллер очень похож на процессор компьютера. Если это так, почему бы просто не использовать компьютер для управления роботом? Итак, что выбрать настольный компьютер или микроконтроллер?


По сути, в более продвинутых роботах, особенно тех, которые включают сложные вычисления и алгоритмы, микроконтроллер часто заменяются (или дополняются) стандартным компьютером. В настольном компьютере установлена материнская плата, процессор, оперативная память устройства (например, жесткий диск), видеокарта (встроенная или внешняя).

Дополнительно есть периферийные устройства, такие как монитор, клавиатура, мышь и т. д. Эти системы обычно дороже, физически больше, потребляют больше энергии. Основные отличия выделены в таблице ниже. Кроме этого они часто имеют больший функционал чем необходимо.

Как выбрать микроконтроллер правильно?

Если вы изучаете робототехнику, то вам понадобится микроконтроллер для любого робототехнического проекта. Для новичка, выбор правильного микроконтроллера может показаться сложной задачей. Особенно учитывая ассортимент, технические характеристики и области применения. Есть много различных микроконтроллеров доступны на рынке:

  • Ардуино
  • BasicATOM
  • BasicX
  • Lego EV3
  • и многие другие

Для того чтобы правильно выбрать микроконтроллер задайте себе следующие вопросы:

Какой микроконтроллер самый популярный для моего приложения?

Конечно, создание роботов и электронных проектов в целом-это не конкурс популярности. Очень хорошо если микроконтроллер имеет большую поддержку сообщества. И успешно используется в похожих или даже одинаковых ситуациях. В результате это может значительно упростить этап проектирования. Таким образом, вы могли бы извлечь пользу из опыта других пользователей, как среди любителей, так и среди профессионалов.

Участники сообществ конструкторов роботов делятся друг с другом результатами, кодами, картинками, видео, и подробно рассказывают об успехах и даже неудачах. Все это является доступными материалами и возможностью получать советы от более опытных пользователей. Следовательно, может оказаться очень ценным.

Есть какие-то особенные требования у вашего робота?

Микроконтроллер должен быть способен выполнять все специальные действия вашего робота, чтобы функции исполнялись правильно. Некоторые особенности являются общими для всех микроконтроллеров (например, наличие цифровых входов и выходов, возможность выполнять простые математические действия, сравнение значений и принятие решений).

Возможно другим контроллерам требуется специфическое оборудование (например, АЦП, ШИМ, и коммуникационный протокол поддержки). Также требования к памяти и скорости, а также число выводов должны быть приняты во внимание.

Какие компоненты доступны для конкретного микроконтроллера?

Может быть ваш робот имеет специальные требования или необходим конкретный датчик или компонент. И это имеет решающее значение для вашего проекта. Следоваетльно выбор совместимого микроконтроллера, безусловно, очень важен.

Большинство датчиков и компонентов может взаимодействовать напрямую со многими микроконтроллерами. Хотя некоторые комплектующие предназначены для взаимодействия с конкретным микроконтроллером. Возможно они будут уникальными и несовместимыми другими типами микроконтроллеров.

Что нас ждет в будущем?

Цена на компьютеры резко идет вниз, и достижения в области технологии делают их меньше и эффективнее. В результате одноплатные компьютеры стали привлекательным вариантом для роботов. Они могут работать с полноценной операционной системой (Windows и Linux являются наиболее распространенными).

Дополнительно компьютеры могут подключаться к внешним устройствам, таким как USB-устройства, жидкокристаллические дисплеи и т. д. В отличие от своих предков, эти одноплатные компьютеры, как правило, значительно меньше потребляют электроэнергии.

Практическая часть

Для того чтобы выбрать микроконтроллер составим список нужных нам критериев:

  • Стоимость микроконтроллера должна быть низкой
  • Он должен быть простым в использовании и хорошо поддерживаться
  • Важно наличие доступной документации
  • Он должен программироваться в графической среде
  • Он должен быть популярен и иметь активное сообщество пользователей
  • Так как наш робот будет использовать два двигателя и различные датчики, то микроконтроллеру понадобится как минимум два порта для управления двигателями и несколько портов для подключения датчиков. Также должна быть возможность для расширения количества подключаемых устройств в будущем.

Этим критериям соответствует модуль EV3 из набора Lego Mindstorms EV3.


Обзор модуля EV3

Наверняка, насмотревшись фильмов про роботов, тебе не раз хотелось построить своего боевого товарища, но ты не знал с чего начать. Конечно, у тебя не получится построить двуногого терминатора, но мы и не стремимся к этому. Собрать простого робота может любой, кто умеет правильно держать паяльник в руках и для этого не нужно глубоких знаний, хотя они и не помешают. Любительское роботостроение мало чем отличается от схемотехники, только гораздо интереснее, потому что тут так же затронуты такие области, как механика и программирование. Все компоненты легкодоступны и стоят не так уж и дорого. Так что прогресс не стоит на месте, и мы будем его использовать в свою пользу.

Введение

Итак. Что же такое робот? В большинстве случаев это автоматическое устройство, которое реагирует на какие-либо действия окружающей среды. Роботы могут управляться человеком или выполнять заранее запрограммированные действия. Обычно на роботе располагают разнообразные датчики (расстояния, угла поворота, ускорения), видеокамеры, манипуляторы. Электронная часть робота состоит из микроконтроллера (МК) – микросхема, в которую заключён процессор, тактовый генератор, различная периферия, оперативная и постоянная память. В мире существует огромное количество разнообразных микроконтроллеров для разных областей применения и на их основе можно собирать мощных роботов. Для любительских построек широкое применение нашли микроконтроллеры AVR. Они, на сегодняшний день, самые доступные и в интернете можно найти много примеров на основе этих МК. Чтобы работать с микроконтроллерами тебе нужно уметь программировать на ассемблере или на Cи и иметь начальные знания в цифровой и аналоговой электронике. В нашем проекте мы будем использовать Cи. Программирование для МК мало чем отличается от программирования на компьютере, синтаксис языка такой же, большинство функций практически ничем не отличаются, а новые довольно легко освоить и ими удобно пользоваться.

Что нам нужно

Для начала наш робот будет уметь просто объезжать препятствия, то есть повторять нормальное поведение большинства животных в природе. Всё что нам потребуется для постройки такого робота можно будет найти в радиотехнических магазинах. Решим, как наш робот будет передвигаться. Самым удачным я считаю гусеницы, которые применяются в танках, это наиболее удобное решение, потому что гусеницы имеют большую проходимость, чем колёса машины и ими удобнее управлять (для поворота достаточно вращать гусеницы в разные стороны). Поэтому тебе понадобится любой игрушечный танк, у которого гусеницы вращаются независимо друг от друга, такой можно купить в любом магазине игрушек по разумной цене. От этого танка тебе понадобится только платформа с гусеницами и моторы с редукторами, остальное ты можешь смело открутить и выкинуть. Так же нам потребуется микроконтроллер, мой выбор пал на ATmega16 – у него достаточно портов для подключения датчиков и периферии и вообще он довольно удобный. Ещё тебе потребуется закупить немного радиодеталей, паяльник, мультиметр.

Делаем плату с МК



Схема робота

В нашем случае микроконтроллер будет выполнять функции мозга, но начнём мы не с него, а с питания мозга робота. Правильное питание – залог здоровья, поэтому мы начнём с того, как правильно кормить нашего робота, потому что на этом обычно ошибаются начинающие роботостроители. А для того, чтобы наш робот работал нормально нужно использовать стабилизатор напряжения. Я предпочитаю микросхему L7805 – она предназначена, чтобы на выходе выдавать стабильное напряжение 5В, которое и нужно нашему микроконтроллеру. Но из-за того, что падение напряжения на этой микросхеме составляет порядка 2,5В к нему нужно подавать минимум 7,5В. Вместе с этим стабилизатором используются электролитические конденсаторы, чтобы сгладить пульсации напряжения и в цепь обязательно включают диод, для защиты от переполюсовки.
Теперь мы можем заняться нашим микроконтроллером. Корпус у МК - DIP (так удобнее паять) и имеет сорок выводов. На борту имеется АЦП, ШИМ, USART и много другого, что мы пока использовать не будем. Рассмотрим несколько важных узлов. Вывод RESET (9-ая нога МК) подтянут резистором R1 к «плюсу» источника питания – это нужно делать обязательно! Иначе твой МК может непреднамеренно сбрасываться или, проще говоря – глючить. Так же желательной мерой, но не обязательной является подключение RESET’а через керамический конденсатор C1 к «земле». На схеме ты так же можешь увидеть электролит на 1000 мкФ, он спасает от провалов напряжения при работе двигателей, что тоже благоприятно скажется на работе микроконтроллера. Кварцевый резонатор X1 и конденсаторы C2, C3 нужно располагать как можно ближе к выводам XTAL1 и XTAL2.
О том, как прошивать МК, я рассказывать не буду, так как об этом можно прочитать в интернете. Писать программу мы будем на Cи, в качестве среды программирования я выбрал CodeVisionAVR. Это довольно удобная среда и полезна новичкам, потому что имеет встроенный мастер создания кода.


Плата моего робота

Управление двигателями

Не менее важным компонентом в нашем роботе является драйвер двигателей, который облегчает нам задачу в управлении им. Никогда и ни в коем случае нельзя подключать двигатели напрямую к МК! Вообще мощными нагрузками нельзя управлять с микроконтроллера напрямую, иначе он сгорит. Пользуйтесь ключевыми транзисторами. Для нашего случая есть специальная микросхема – L293D. В подобных несложных проектах всегда старайтесь использовать именно эту микросхему с индексом «D», так как она имеет встроенные диоды для защиты от перегрузок. Этой микросхемой очень легко управлять и её просто достать в радиотехнических магазинах. Она выпускается в двух корпусах DIP и SOIC. Мы будем использовать в корпусе DIP из-за удобства монтажа на плате. L293D имеет раздельное питание двигателей и логики. Поэтому саму микросхему мы будем питать от стабилизатора (вход VSS), а двигатели напрямую от аккумуляторов (вход VS). L293D выдерживает нагрузку 600 мА на каждый канал, а этих каналов у неё два, то есть к одной микросхеме можно подключить два двигателя. Но, чтобы перестраховаться, мы объединим каналы, и тогда потребуется по одной микре на каждый двигатель. Отсюда следует, что L293D сможет выдержать 1.2 А. Чтобы этого добиться нужно объединить ноги микры, как показано на схеме. Микросхема работает следующим образом: когда на IN1 и IN2 подаётся логический «0», а на IN3 и IN4 логическая единица, то двигатель вращается в одну сторону, а если инвертировать сигналы – подать логический ноль, тогда двигатель начнёт вращаться в другую сторону. Выводы EN1 и EN2 отвечают за включение каждого канала. Их мы соединяем и подключаем к «плюсу» питания от стабилизатора. Так как микросхема греется во время работы, а установка радиаторов проблематична на этот тип корпуса, то отвод тепла обеспечивается ногами GND - их лучше распаивать на широкой контактной площадке. Вот и всё, что на первое время тебе нужно знать о драйверах двигателей.

Датчики препятствий

Чтобы наш робот мог ориентироваться и не врезался во всё, мы установим на него два инфракрасных датчика. Самый простейший датчик состоит из ик-диода, который излучает в инфракрасном спектре и фототранзистор, который будет принимать сигнал с ик-диода. Принцип такой: когда перед датчиком нет преграды, то ик-лучи не попадают на фототранзистор и он не открывается. Если перед датчиком препятствие, тогда лучи от него отражаются и попадают на транзистор – он открывается и начинает течь ток. Недостаток таких датчиков в том, что они могут по-разному реагировать на различные поверхности и не защищены от помех - от посторонних сигналов других устройств датчик, случайно, может сработать. От помех может защитить модулирование сигнала, но пока мы этим заморачиватся не будем. Для начала, и этого хватит.


Первый вариант датчиков моего робота

Прошивка робота

Чтобы оживить робота, для него нужно написать прошивку, то есть программу, которая бы снимала показания с датчиков и управляла двигателями. Моя программа наиболее проста, она не содержит сложных конструкций и всем будет понятна. Следующие две строки подключают заголовочные файлы для нашего микроконтроллера и команды для формирования задержек:

#include
#include

Следующие строки условные, потому что значения PORTC зависят от того, как ты подключил драйвер двигателей к своему микроконтроллеру:

PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;

Значение 0xFF означает, что на выходе будет лог. «1», а 0x00 – лог. «0».

Следующей конструкцией мы проверяем, есть ли перед роботом препятствие и с какой оно стороны:

If (!(PINB & (1< {
...
}

Если на фототранзистор попадает свет от ик-диода, то на ноге микроконтроллера устанавливается лог. «0» и робот начинает движение назад, чтобы отъехать от препятствия, потом разворачивается, чтобы снова не столкнуться с преградой и затем опять едет вперёд. Так как у нас два датчика, то мы проверяем наличие преграды два раза – справа и слева и потому можем узнать с какой стороны препятствие. Команда «delay_ms(1000)» указывает на то, что пройдёт одна секунда, прежде чем начнёт выполняться следующая команда.

Заключение

Я рассмотрел большинство аспектов, которые помогут тебе собрать твоего первого робота. Но на этом робототехника не заканчивается. Если ты соберёшь этого робота, то у тебя появится куча возможностей для его расширения. Можно усовершенствовать алгоритм робота, как например, что делать, если препятствие не с какой-то стороны, а прямо перед роботом. Так же не помешает установить энкодер – простое устройство, которое поможет точно располагать и знать расположение твоего робота в пространстве. Для наглядности возможна установка цветного или монохромного дисплея, который может показывать полезную информацию – уровень заряда аккумулятора, расстояние до препятствия, различную отладочную информацию. Не помешает и усовершенствование датчиков – установка TSOP (это ик-приёмники, которые воспринимают сигнал только определённой частоты) вместо обычных фототранзисторов. Помимо инфракрасных датчиков существуют ультразвуковые, стоят подороже, и тоже не лишены недостатков, но в последнее время набирают популярность у роботостроителей. Для того, чтобы робот мог реагировать на звук, было бы неплохо установить микрофоны с усилителем. Но по-настоящему интересным, я считаю, установка камеры и программирование на её основе машинного зрения. Есть набор специальных библиотек OpenCV, с помощью которых можно запрограммировать распознавание лиц, движения по цветным маякам и много всего интересного. Всё зависит только от твоей фантазии и умений.
Список компонентов:
  • ATmega16 в корпусе DIP-40>
  • L7805 в корпусе TO-220
  • L293D в корпусе DIP-16 х2 шт.
  • резисторы мощностью 0,25 Вт номиналами: 10 кОм х1 шт., 220 Ом х4 шт.
  • конденсаторы керамические: 0.1 мкФ, 1 мкФ, 22 пФ
  • конденсаторы электролитические: 1000 мкФ х 16 В, 220 мкФ х 16В х2 шт.
  • диод 1N4001 или 1N4004
  • кварцевый резонатор на 16 МГц
  • ИК-диоды: подойдут любые в количестве двух штук.
  • фототранзисторы, тоже любые, но реагирующие только на длину волны ик-лучей
Код прошивки:
/*****************************************************
Прошивка для робота

Тип МК: ATmega16
Тактовая частота: 16,000000 MHz
Если у тебя частота кварца другая, то это нужно указать в настройках среды:
Project -> Configure -> Закладка "C Compiler"
*****************************************************/

#include
#include

Void main(void)
{
//Настраиваем порты на вход
//Через эти порты мы получаем сигналы от датчиков
DDRB=0x00;
//Включаем подтягивающие резисторы
PORTB=0xFF;

//Настраиваем порты на выход
//Через эти порты мы управляем двигателями
DDRC=0xFF;

//Главный цикл программы. Здесь мы считываем значения с датчиков
//и управляем двигателями
while (1)
{
//Едем вперёд
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 1;
PORTC.3 = 0;
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 1;
PORTC.1 = 0;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
}
if (!(PINB & (1< {
//Едем назад 1 секунду
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 0;
PORTC.3 = 1;
delay_ms(1000);
//Заворачиваем
PORTC.0 = 0;
PORTC.1 = 1;
PORTC.2 = 1;
PORTC.3 = 0;
delay_ms(1000);
}
};
}

О моём роботе

В данный момент мой робот практически завершён.


На нём установлена беспроводная камера, датчик расстояния (и камера и этот датчик установлены на поворотной башне), датчик препятствия, энкодер, приёмник сигналов с пульта и интерфейс RS-232 для соединения с компьютером. Работает в двух режимах: автономном и ручном (принимает сигналы управления с пульта ДУ), камера также может включаться/выключаться дистанционно или самим роботом для экономии заряда батарей. Пишу прошивку для охраны квартиры (передача изображения на компьютер, обнаружение движений, объезд помещения).

По пожеланиям выкладываю видео:

UPD. Перезалил фотографии и сделал небольшие поправки в тексте.

Решил плавно перейти к динамичным движущимся моделям. Это проект маленького самодельного робота на ИК-управлении, собранного из простых и доступных для приобретения деталей. В основе - два микроконтроллера. Передачу с пульта ДУ обеспечивает PIC12F675 , а приёмная часть к контроллером моторчиков реализована на PIC12F629 .

Схема робота на микроконтроллере

С цифровой частью всё вышло гладко, проблема была только в "двигательной установке" - маленьких редукторах, которые сделать в домашних условиях очень проблематично, поэтому пришлось развить идею "виброжуков ". Управление микромоторами осуществляется через усилительные транзисторные ключи на BC337. Они заменимы на любые другие небольшие транзисторы n-p-n с током коллектора от 0,5 А.

Размеры получились очень маленькие - на фото сравнение его с монетой и ещё возле спичечного коробка. Глаза робота сделаны из сверхярких светодиодов, засунутых в корпус небольших электролитических конденсаторов.

Обсудить статью МАЛЕНЬКИЙ САМОДЕЛЬНЫЙ РОБОТ

В этой статье речь пойдет об интереснейших роботах, принцип построения которых заключается в использовании простых аналоговых цепей. Мы рассмотрим их особенности и основные принципы, а в конце попробуем сделать простого робота.
Это просто даже для начинающих радиолюбителей!

Одобряется при создании робота использовать как можно меньшее число электронных элементов и можно даже пустить в ход электронные отходы.

Важнейшим принципом конструирования BEAM-робота является подражание природе живых существ.
BEAM робот должен обладать свойствами, присущими живым существам. Конечно же речь не идет о таких признаках как дыхание, рост, размножение, потому что роботу это и не нужно. Зато питание, движение и развитие для данных роботов являются главным смыслом жизни.

Движение является неотьемлимым признаком (свойством) любого живого существа. Это самое простое, что можно реализовать в BEAM роботе. В моем понимании движение бывает самопроизвольное или обдуманное (намеренное). По отношению к умным роботам можно сказать, что от них требуются только обдуманные движения. Например у человека невольно могут придти в движение мышцы лица для передачи мимики (например из-за внезапно возникшей эмоции), а для робота любое ненужное движение ведет к нерациональной трате энергии.

Сложной, но интересной задачей стоит создание искусственного интеллекта BEAM робота, ведь по философии BEAM роботостроения в них не используются микроконтроллеры и микропроцессоры, а все осуществляется на аналоговых дискретных компонентах. Использование микроконтроллеров не запрещается, но базовые инстинкты робота должны быть основаны на использовании множества поведенческих моделей, связанных напрямую с сенсорами и датчиками при минимальном уровне обработки сигналов.

Питание

В большинстве случаев элементом питания является батарейка. Но если вы хотите создать робота с автономным питанием, то нужно использовать энергию излучения (например солнечный свет). Устройство, преобразующее солнечную энергию в постоянный электрический ток называется солнечная батарея, состоящая из полупроводниковых фотоэлементов. Солнечные батареи дают небольшое количество электрической энергии в режиме реального времени, но только в присутствии солнца. Для того чтобы не "умереть" при отсутствии солнца, целесообразно использовать аккумуляторные элементы для сохранения накопленной энергии на "черный день"...ну или на пасмурный день.

Адаптация и поведение

Робот на аналоговых схемах больше приспособлен к окружающей среде по сравнению с цифровым роботом, эффективность которого заканчивается при попадании в ситуацию не прописанную в программе его цифрового мозга. Иными словами цифровые роботы не могут решать задачи, ответы на которые не заложены в их программе.

Концепция BEAM-роботов, предложенная Марком Тилденом, состояла в том, что реакция на внешние факторы должна обеспечиваться на первом этапе самой машиной, без участия какого-либо "мозга", как это происходило и в живой природе, на пути от простейших к человеку. По этому же пути должно идти совершенствование и создание более сложных робосистем.

Виды

Существуют разные виды роботов BEAM, которые созданы для выполнения разных задач.
Аудиотропы - реагируют на звуки.
Фототропы - реагируют на свет.
Радиотропы - реагируют на радиочастоты.
Термотропы - реагируют на тепловое излучение.

Наиболее часто встречаются фототропы, поскольку поиск света является наиболее очевидной задачей для использующего солнечную энергию робота.

Модульная структура

Лично мне нравится идея создания BEAM робота из отдельных функциональных модулей, и руководствуясь принципом "от простого к сложному" можно будет развивать робота, добавляя все новые и новые модули. Каждый модуль сам по себе может работать отдельно, т.е. не будет использоваться централизованный мозг для обработки информации.

Шасси

Для того, чтобы робот мог двигаться, нужно сконструировать для него шасси.
Оно бывает разных типов: гусеничное, на колесах и даже на ногах...
Давайте рассмотрим их подробнее.

1. Гусеничное.

На рисунке представлено готовое шасси, которое не трудно найти в продаже. В большинстве случаев приходит в движение от пары мотор-редукторов.
Плюсы: хорошо поворачивает, не используя при этом рулевые механизмы; имеет повышенную проходимость; на него удобно монтировать электрические платы и отдельные компоненты.
Минусы: такое шасси трудно собрать дома самому, а стоимость составляет в среднем 90 долларов.

2. Шасси на колесах.


Плюсы: самый простой тип в отношении того, что его можно собрать дома самому (например из детского конструктора и пр.) или использовать игрушечную машинку.
Минусы: для осуществления поворота требуется рулевой поворотный механизм, а значит придется использовать дополнительный электродвигатель, что влечет за собой увеличение массы конструкции и повышение потребления электроэнергии.

3. Робот на ногах.


Это самый сложный тип.
Плюсы: их внешний вид приближен к живым существам, а движения выглядят более эффектно.
Минусы: используется большое количество механизмов, и очень часто такой робот нуждается в системе, обеспечивающей равновесие.

ДЕЛАЕМ САМИ!

Шасси для своего робота можете сделать так как показано на рисунке ниже.

За основу можно взять коробочку. Лучше из пластмассы, потому что это легкий материал. В этой же коробке удобно разместить элемент питания: аккумулятор, батарейки и т.п.
Учитывайте, что чем больше колеса, тем медленнее будет ехать робот (а может и не сдвинуться с места).

Второй вариант. Здесь использованы пластиковые хомутики для закрепления моторчиков.

Электромоторы можно взять со старой техники: магнитофоны, игрушки, дисководы и пр.

У меня дома имелись моторчики трех типов:

Выбор пал на верхний моторчик. Он показал хорошие характеристики по тяге и потреблению тока.

Также нам потребуется батарейный отсек, чтобы обеспечить питание. Питание можно организовать раздельное: для моторов (силовое) и для логической схемы.

Ниже представлена простая схема робота, который едет на свет фонарика.

Схема 1. "Идущий на свет".

В этой схеме использованы фотодиоды. Их выбираем по диапазону чувствительности, т.е. учитывая на какой свет робот будет идти. К примеру на свет от фонарика (видимый диапазон) или на лучик пульта от телевизора (инфракрасный диапазон). Если осветить фотоэлемент VD1, то будет вращаться Мотор 1, а если осветить фотоэлемент VD2, то будет вращаться Мотор 2. Учитывая это, моторы расположим так, чтобы когда VD1 освещен Мотор 1 поворачивал робота к свету.

А если моторы поменять местами, то робот наоборот будет отворачиваться от света.

Теперь рассмотрим фотоэлементы.
В качестве элементов, чувствительных к свету используются фотодиоды, фототранзисторы, фоторезисторы и т.п. В интернете присутствует много информации по этим элементам, поэтому я опишу их вкратце.

1. Фоторезистор: в темноте он представляет собой высокоомный резистор, а при освещении светом его сопротивление падает пропорционально интенсивности света, проявляя линейную зависимость. Как правило воспринимают только видимый свет.

2. Фотодиод: полупроводниковый прибор, так же как и обычный диод имеет анод и катод.
Если применить прямое включение, то освещенный фотодиод будет вырабатывать напряжение на выводах.
При обратном включении сопротивление облученного фотодиода падает так же как у фоторезистора.
По диапазону света фотодиоды делятся на ИК-диоды и для видимого света. ИК-диоды воспринимают только инфракрасное излучение, но также хорошо реагируют на лампы накаливания и на Солнце.

3. Фототранзистор: отличается от обычного транзистора тем, что на область базы подается свет, который управляет усилением тока эмиттер-коллектор.

Без особого успеха в качестве светочувствительного элемента можно использовать светодиод. Он обладает слишком малой чувствительностью и усилить ее можно лишь с помощью дополнительной схемы.

BEAM-робот, который получился у меня

В своем роботе я использовал разные фотодиоды неизвестного происхождения. На видео видно, что чувствительность одного из них больше.
Один из фотодиодов реагирует на лучик пульта от телевизора.
Также вся "начинка" залита термоклеем.
Надеюсь у вас получится лучше и красивее!

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
VT1, VT3 Биполярный транзистор

КТ3102

2 КТ315 В блокнот
VT2, VT4 Биполярный транзистор

КТ361Б

2 КТ816

Close