Своё дальнейшее развитие теория информации получила в работах Клода Шеннона, американского инженера и математика (1916 – 2001). Шеннон является одним из создателей математической теории информации. Его основные труды посвящены теории релейно-контактных схем, математической теории связи, кибернетике. К. Шеннон изучал вопросы передачи информации в телеграфии, телефонии или радиовещании в виде сигналов электромагнитных колебаний. Одна из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи информации. Так как в годы войны он служил в шифровальном отделе, где занимался разработкой криптографических систем, то это позже помогло ему открыть методы кодирования с коррекцией ошибок. В своих работах 1948-1949 годов К. Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы , а за единицу количества информации принял то, что впоследствии назвали битом (bit).

Для дальнейшего изложения необходимо использовать некоторые понятия теории вероятности : случайное событие, опыт, вероятность события, случайная величина.

В окружающем нас мире происходят различные события, причём мы можем интуитивно, основываясь на опыте, оценивать одни из них как более возможные, чем другие.

Случайным называют событие, которое может наступить или не наступить в результате некоторого испытания, опыта или эксперимента. Будем обозначать события заглавными буквами A, B, C и т.д.

Количественная мера возможности наступления некоторого события A называется его вероятностью и обозначается как p(A), p – от английского probability. Чем более возможно наступление случайного события, тем больше его вероятность: если A более возможно чем B , то p(A) > p(B).

Вводится понятие достоверного события – событие, которое обязательно наступит. Это событие обозначают Ω и полагают, что его вероятность p(Ω) = 1 .

Невозможным называют событие, которое никогда не произойдёт. Его обозначают « и полагают, что его вероятность p(Æ)= 0 . Для вероятностей всех остальных событий A выполняется неравенство p(Æ) < p(A) < p(Ω) , или 0 < p(A) < 1 .

Для событий вводится понятие суммы и произведения.

Сумма событий A+B – это событие, которое состоит в наступлении события A или В. Произведение событий A*B состоит в одновременном наступлении события A и B .

События A и B несовместны , если они не могут наступить вместе в результате одного испытания. Вероятность суммы несовместных событий равна сумме их вероятностей. Если А и В несовместные события, то p(A+B) = p(A) + p(B).



События A1, A2, A3, …An образуют полную группу , если в результате опыта обязательно наступит хотя бы одно из них.

Если события A1, A2, A3, …An попарно несовместны и образуют полную группу, то сумма их вероятностей p1+p2+p3+ …. pn =1.

Если они при этом ещё и равновероятны, то вероятность каждого равна p = 1/n , где n – число событий.

Вероятность события определяется как отношение числа благоприятных событию исходов опыта к общему числу исходов.

Частота события – эмпирическое приближение его вероятности. Она вычисляется в результате проведения серии опытов как отношение числа опытов, в которых событие наступило к общему числу опытов. При большом числе опытов (испытаний) частота события стремится к его вероятности.

К. Шеннон, используя подход Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота (вероятность) использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко.

Рассмотрим алфавит A m состоящий из m символов. Обозначим через p i вероятность (частоту) появления i -ого символа в любой позиции передаваемого сообщения, состоящего из n символов.

Один i – ый символ алфавита несёт количество информации равное -Log 2 (p i) . Перед логарифмом стоит «минус» потому, что количество информации величина неотрицательная, а Log 2 (x) <0 при 0.

На месте каждого символа в сообщении может стоять любой символ алфавита A m ; количество информации, приходящееся на один символ сообщения, равно среднему значению информации по всем символам алфавита A m :

Общее количество информации, содержащееся в сообщении из n символов равно:

Если все символы алфавита A m появляются с равной вероятностью, то все p i = p . Так как ∑р i = 1 , то p = 1/m.

Формула в случае, когда все символы алфавита равновероятны, принимает вид

I = n *Log 2 (m ).

Вывод : формула Шеннона в случае, когда все символы алфавита равновероятны, переходит в формулу Хартли.

В общем случае количество энтропии H произвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 , x 2 , … x m c вероятностями p 1 , p 2 , … p m , вычисленное по формуле Шеннона, равно

Напомним, что p 1 + p 2 + … +p m = 1. Если все p i одинаковы, то все состояния системы X равновероятны; в этом случае p i = 1/m , и формула переходит в формулу Хартли: H(X) = Log 2 (m).

Замечание. Количество энтропии системы (случайной величины) Х не зависит от того, в каких конкретно состояниях x 1 , x 2 , … x m может находиться система, но зависит от числа m этих состояний и от вероятностей p 1 , p 2 , … p m , с которыми система может находиться в этих состояниях. Это означает, что две системы, у которых число состояний одинаково, а вероятности этих состояний p 1 , p 2 , … p m равны (с точностью до порядка перечисления), имеют равные энтропии.

Теорема. Максимум энтропии H(X) достигается в том случае, когда все состояния системы равновероятны. Это означает, что

Если система X может находиться только в одном состоянии (m=1 ), то её энтропия равна нулю .

Рассмотрим систему, которая может принимать только два состояния x1 и x2 с вероятностями p1 и p2 :

Количество энтропии такой системы равно

H(X) = - (1/2*Log 2 (1/2)+ 1/2*Log 2 (1/2)) = -Log 2 (1/2) = Log 2 (2) = 1

Это количество принимается за единицу измерения энтропии (информации) и называется 1 бит (1 bit).

Рассмотрим функцию

h(x) = -(x*log 2 (x) + (l-x)*log 2 (l-x))

Область её определения - интервал (0 ;1) , Lim h(x) = 0 при х -> 0или х -> 1.

График этой функции представлен на рисунке:

График функции h(x) = -(x*log 2 (x) + (l-x)*log 2 (l-x))

Если обозначить x через p 1 , а (1-x) через p 2 , то p 1 + p 2 =1 ; p 1 , p 2 Î(0;1) , h(x) = H(p 1 , p 2) = - (p 1 *log 2 (p 1) + (p 2)*log 2 (p 2)) – энтропия системы с двумя состояниями; максимум H достигается при p 1 = p 2 = 0.5 .

График h(x) можно использовать при решении следующих задач:

Задача 1. Заданы три случайных величины X, Y, Z, каждая из которых принимает по два значения с вероятностями:

1. P(X = x1) = 0.5; P(X = x2) = 0.5;

2. P(Y = y1) = 0.2; P(Y = y2) = 0.8;

3. P(Z = z1) = 0.3; P(Z = z2) = 0.7 .

Запись P(X = x1) = 0.5 означает, что случайная величина X принимает значение x1 с вероятностью 0.5. Требуется расположить энтропии этих систем в порядке возрастания.

Решение .

Энтропия H(X) равна 1 и будет наибольшей;

Энтропия H(Y) равна значению функции h(x), ()при x = 0.2, т.е. H(Y)=h(0.2);

Энтропия H(Z) = h(0.3). По графику h(x) можно определить, что h(0.2) < h(0.3). Следовательно, H(Y) < H(Z) < H(X).

Замечание 1. Энтропия системы тем больше, чем менее отличаются вероятности её состояний друг от друга.

На основании этого можно сделать вывод, что H(Y) < H(Z).

Например, если для систем X и Y с тремя состояниями заданы вероятности: для X {0.4; 0.3; 0.3}, для Y {0.1; 0.1; 0.8}, то очевидно, что неопределённость системы X больше, чем неопределённость системы Y: у последней, скорее всего, будет реализовано состояние, вероятность которого равна 0.8 .

Энтропия H(X) характеризует степень неопределённости системы. Чем больше объём полученных о системе сведений, тем больше будет информации о системе, и тем менее неопределённым будет её состояние для получателя информации.

Если энтропия системы после получения информации становится равной нулю, это означает, что неопределённость исчезла, вся энтропия «перешла» в информацию. В этом случае говорят, что была получена полная информацию о системе X. Количество информации, приобретаемое при полном выяснении состояния физической системы, равно энтропии этой системы.

Если после получения некоторого сообщения неопределённость системы X стала меньше, но не исчезла совсем, то количество информации, содержащееся в сообщении, равно приращению энтропии:

I = H1(X) - H2(X),

где H1(X) и H2(X) - энтропия системы до и после сообщения, соответственно. Если H2(X) = 0, то мера неопределённости системы равна нулю и была получена полная информация о системе.

Пример . Вы хотите угадать количество очков, которое выпадет на игральном кубике. Вы получили сообщение, что выпало чётное число очков. Какое количество информации содержит это сообщение?

Решение . Энтропия системы «игральный кубик» H1 равна Log 2 6 , т.к. кубик может случайным образом принять шесть равновозможных состояний {1, 2, 3, 4, 5, 6}. Полученное сообщение уменьшает число возможных состояний до трёх: {2, 4, 6}, т.е. энтропия системы теперь равна H2= Log 2 3 . Приращение энтропии равно количеству полученной информации I = H1 – H2 = Log 2 6 - Log 2 3 = Log 2 2 = 1 bit.

На примере разобранной задачи можно пояснить одно из распространённых определений единицы измерения – 1 бит: 1 бит -количество информации, которое уменьшает неопределённость состояния системы в два раза.

Неопределённость дискретной системы зависит от числа её состояний N.

Энтропия до получения информации H1= Log 2 N . Если после получения информации неопределённость уменьшилась в два раза, то это означает, что число состояний стало равным N/2, а энтропия H2 = Log 2 N/2. Количество полученной информации I= H1 -H2 = Log 2 N - Log 2 N/2 = Log 2 2 = 1 бит.

Рассмотрим несколько задач на применение формулы Шеннона и Хартли.

Задача 2. Может ли энтропия системы, которая принимает случайным образом одно из 4-х состояний, равняться: а) 3; б) 2.1 в) 1.9 г) 1; д) 0.3? Ответ объяснить.

Решение. Максимально возможное значение энтропия системы с 4-мя состояниями достигает в случае, когда все состояния равновероятны. Это значение по формуле Хартли равно Log 2 4 = 2 бита. Во всех других случаях энтропия системы с 4-мя состояниями будет меньше 2. Следовательно, возможными значениями энтропии из перечисленных выше, могут быть значения 1.9, 1, 0.3.

Задача 3. Задана функция H(x)= -x*Log 2 (x) - (1-x)*Log 2 (1-x). Расположите в порядке возрастания следующие значения: H(0.9), H(0.85), H(0.45), H(0.2), H(0.15).

Решение. Используем график функции (3.5). Наибольшим значением будет H(0.45), наименьшим значением – H(0.9), затем по возрастанию идут значения H(0.15) и H(0.85) = H(0.15); H(0.2). Ответ: H(0.9) < H(0.15)=H(0.85)< H(0.2) < H(0.45). É

Задача 4. По линии связи переданы сообщения: a) «начало_в_10»; b) «лоанча_1_в0». Сравните количество информации в первом и втором сообщении.

Решение. Первое и второе сообщение состоят из одних и тех же символов: второе получено из первого в результате перестановки этих символов. В соответствии с формулой Шеннона эти сообщения содержат одинаковое количество информации. При этом первое сообщение несёт содержательную информацию, а второе – простой набор символов. Однако, в этом случае можно сказать, что второе сообщение является «зашифрованным» вариантом первого, и поэтому количество информации в обоих сообщениях одинаковое.É

Задача 5. Получены три различных сообщения A, B, C:

A= «прибытие в десять часов»; B= «прибытие в десять часов ноль минут»; C= «прибытие ровно в десять часов». Используя энтропийный подход Шеннона, сравните количество информации, содержащееся в этих сообщениях.

Решение. Обозначим количество информации в сообщениях A, B, C через I(A), I(B), I(C) соответственно. В смысле «содержания» эти сообщения совершенно одинаковы, но одинаковое содержание выражено с помощью разного количества символов. При этом все символы сообщения А содержатся в сообщении B и С, сообщение С = A + «ровно», В = A + «ноль минут»; в соответствии с подходом Шеннона получаем: I(A) < I(C) < I(B).

Существует множество ситуаций, когда возможные события имеют различные вероятности реализации. Например, если монета несимметрична (одна сторона тяжелее другой), то при ее бросании вероятности выпадения «орла» и «решки» будут различаться.

Формулу для вычисления количества информации для событий с различными вероятностями предложил К. Шеннон в 1948 г. В этом случае количество информации определяется по формуле:

где I - количество информации;

N - количество возможных событий;

Pi - вероятности отдельных событий.

Для частного, но широко распространенного и рассмотренного выше случая, когда события равновероятны (р; = 1 / N), величину количества информации I можно рассчитать по формуле:

Задание «Бросание пирамидки». Определить количество информации, которое мы получаем в результате бросания несимметричной и симметричной пирамидок.

При бросании несимметричной четырехгранной пирамидки вероятности отдельных событий равны:

Количество информации, которое мы получим после бросания несимметричной пирамидки, можно рассчитать по формуле (2.3):

При бросании симметричной четырехгранной пирамидки вероятности отдельных событий равны между собой:

Количество информации, которое мы получим после бросания симметричной пирамидки, можно рассчитать по формуле (2.4):

Таким образом, при бросании симметричной пирамидки, когда события равновероятны, мы получим большее количество информации (2 бита), чем при бросании несимметричной пирамидки, когда события неравновероятны (1,75 бита).

Количество информации, которое мы получаем, достигает максимального значения, если события равновероятны.

В теории информации доказано, что максимальное количество информации несет сообщение, в котором вероятности появления всех знаков одинаковы.

Количество информации, которое несет знак, зависит от вероятности его получения. Если получатель заранее точно знает, какой знак придет, то полученное количество информации будет равно 0. Наоборот, чем менее вероятно получение знака, тем больше его информационная емкость.

В русской письменной речи частота использования букв в тексте различна, так, в среднем на 1000 знаков осмысленного текста приходится 200 букв «а» и в сто раз меньшее количество буквы «ф» (всего 2). Таким образом, с точки зрения теории информации информационная емкость знаков русского алфавита различна (у буквы «а» она наименьшая, а у буквы «ф» - наибольшая).

Проведем воображаемый эксперимент: пусть обезьяна передает бессмысленный текст, случайно нажимая клавиши клавиатуры компьютера (в этом случае вероятности появления знаков одинаковы), а человек передает имеющее смысл сообщение такой же длины (в этом случае вероятности появления знаков различны).

Из теории информации следует парадоксальный вывод о том, что сообщение, передаваемое обезьяной, содержит большее количество информации, чем сообщение, передаваемое человеком.

Выбор правильной стратегии в игре «Угадай число». На получении максимального количества информации строится выбор правильной стратегии в игре «Угадай число», в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй должен «угадать» задуманное число.

Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При правильной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и их отгадывание равновероятно. В этом случае на каждом шаге ответ первого игрока («да» или «нет») будет нести максимальное количество информации (1 бит).

Как видно из табл. 2.4, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщений от первого участника, содержащих 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Таблица 2.4

Информационная модель игры «Угадай число»

Практическое задание «Определение количества информации».

В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

Так как количество шариков различных цветов неодинаково, то вероятности зрительных сообщений о цвете вынутого из мешочка шарика также различаются и равны количеству шариков данного цвета, деленному на общее количество шариков:

События неравновероятны, поэтому для определения количества информации, содержащемся в сообщении о цвете шарика, воспользуемся формулой (2.3):

Для вычисления этого выражения, содержащего логарифмы, воспользуемся компьютерным калькулятором.

Контрольные вопросы

1. В каком случае количество информации, полученное о событии, достигает максимального значения?

Задания для самостоятельного выполнения

  • 2.12. Какое количество вопросов достаточно задать вашему собеседнику, чтобы наверняка определить:
    • ? день недели, в котором он родился?
    • ? месяц, в котором он родился?
    • ? число, в которое он родился?

Практикум к главе 2

Практическая работа 2.1. Перевод единиц измерения количества информации с помощью калькулятора

Практическая работа 2.2. Определение количества информации по формуле Шеннона с помощью калькулятора

Билет 8

Информацио́нная энтропи́я - мера неопределённости или непредсказуемости информации, неопределённость появления какого-либо символа первичного алфавита. При отсутствии информационных потерь численно равна количеству информации на символ передаваемого сообщения.

Например, в последовательности букв, составляющих какое-либо предложение на русском языке, разные буквы появляются с разной частотой, поэтому неопределённость появления для некоторых букв меньше, чем для других. Если же учесть, что некоторые сочетания букв (в этом случае говорят об энтропии -ого порядка, см. ниже) встречаются очень редко, то неопределённость уменьшается еще сильнее.

Для иллюстрации понятия информационной энтропии можно также прибегнуть к примеру из области термодинамической энтропии, получившему название демона Максвелла. Концепции информации и энтропии имеют глубокие связи друг с другом, но, несмотря на это, разработка теорий в статистической механике и теории информации заняла много лет, чтобы сделать их соответствующими друг другу.

Энтропия - это количество информации, приходящейся на одно элементарное сообщение источника, вырабатывающего статистически независимые сообщения.

Формула Хартли определяет количество информации, содержащееся в сообщении длины n.

Имеется алфавит А, из букв которого составляется сообщение:

Количество возможных вариантов разных сообщений:

где N - возможное количество различных сообщений, шт; m - количество букв в алфавите, шт; n - количество букв в сообщении, шт.

Пример: Алфавит состоит из двух букв «B» и «X», длина сообщения 3 буквы - таким образом, m=2, n=3. При выбранных нами алфавите и длине сообщения можно составить разных сообщений «BBB», «BBX», «BXB», «BXX», «XBB», «XBX», «XXB», «XXX» - других вариантов нет.

Формула Хартли определяется:

где I - количество информации, бит.

При равновероятности символов формула Хартли переходит в собственную информацию.

Формула Хартли была предложена Ральфом Хартли в 1928 году как один из научных подходов к оценке сообщений.

Формула Шеннона

Формулу для вычисления количества информации в случае различных вероятностей событий предложил К. Шеннон в 1948 году. В этом случае количество информации определяется по формуле:

(2.2)

Где I - количество информации;
N - количество возможных событий;
р i - вероятность i-го события.

Например, пусть при бросании несимметричной четырехгранной пирамидки вероятности отдельных событий будут равны:

Р 1 = 1/2, р 2 = 1/4, р 3 = 1/8, р 4 = 1/8.

Билет № 5

Способы кодирования информации.
Одна и та же информация может быть представлена (закодирована) в нескольких формах. C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Но решать задачу кодирования информации человечество начало задолго до появления компьютеров. Грандиозные достижения человечества - письменность и арифметика - есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.
Двоичное кодирование – один из распространенных способов представления информации. В вычислительных машинах, в роботах и станках с числовым программным управлением, как правило, вся информация, с которой имеет дело устройство, кодируется в виде слов двоичного алфавита.
Кодирование символьной (текстовой) информации.
Основная операция, производимая над отдельными символами текста - сравнение символов.
При сравнении символов наиболее важными аспектами являются уникальность кода для каждого символа и длина этого кода, а сам выбор принципа кодирования практически не имеет значения.
Для кодирования текстов используются различные таблицы перекодировки. Важно, чтобы при кодировании и декодировании одного и того же текста использовалась одна и та же таблица.
Таблица перекодировки - таблица, содержащая упорядоченный некоторым образом перечень кодируемых символов, в соответствии с которой происходит преобразование символа в его двоичный код и обратно.
Наиболее популярные таблицы перекодировки: ДКОИ-8, ASCII, CP1251, Unicode.
Исторически сложилось, что в качестве длины кода для кодирования символов было выбрано 8 бит или 1 байт. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.
Различных комбинаций из 0 и 1 при длине кода 8 бит может быть 28 = 256, поэтому с помощью одной таблицы перекодировки можно закодировать не более 256 символов. При длине кода в 2 байта (16 бит) можно закодировать 65536 символов.
Кодирование числовой информации.
Сходство в кодировании числовой и текстовой информации состоит в следующем: чтобы можно было сравнивать данные этого типа, у разных чисел (как и у разных символов) должен быть различный код. Основное отличие числовых данных от символьных заключается в том, что над числами кроме операции сравнения производятся разнообразные математические операции: сложение, умножение, извлечение корня, вычисление логарифма и пр. Правила выполнения этих операций в математике подробно разработаны для чисел, представленных в позиционной системе счисления.
Основной системой счисления для представления чисел в компьютере является двоичная позиционная система счисления.
Кодирование текстовой информации
В настоящее время, большая часть пользователей, при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др. Подсчитаем, сколько всего символов и какое количество бит нам нужно.
10 цифр, 12 знаков препинания, 15 знаков арифметических действий, буквы русского и латинского алфавита, ВСЕГО: 155 символов, что соответствует 8 бит информации.
Единицы измерения информации.
1 байт = 8 бит
1 Кбайт = 1024 байтам
1 Мбайт = 1024 Кбайтам
1 Гбайт = 1024 Мбайтам
1 Тбайт = 1024 Гбайтам
Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.
Необходимо помнить, что в настоящее время для кодировки русских букв используют пять различных кодовых таблиц (КОИ - 8, СР1251, СР866, Мас, ISO), причем тексты, закодированные при помощи одной таблицы не будут правильно отображаться в другой
Основным отображением кодирования символов является код ASCII - American Standard Code for Information Interchange- американский стандартный код обмена информацией, который представляет из себя таблицу 16 на 16, где символы закодированы в шестнадцатеричной системе счисления.
Кодирование графической информации.
Важным этапом кодирования графического изображения является разбиение его на дискретные элементы (дискретизация).
Основными способами представления графики для ее хранения и обработки с помощью компьютера являются растровые и векторные изображения
Векторное изображение представляет собой графический объект, состоящий из элементарных геометрических фигур (чаще всего отрезков и дуг). Положение этих элементарных отрезков определяется координатами точек и величиной радиуса. Для каждой линии указывается двоичные коды типа линии (сплошная, пунктирная, штрихпунктирная), толщины и цвета.
Растровое изображение представляет собой совокупность точек (пикселей), полученных в результате дискретизации изображения в соответствии с матричным принципом.
Матричный принцип кодирования графических изображений заключается в том, что изображение разбивается на заданное количество строк и столбцов. Затем каждый элемент полученной сетки кодируется по выбранному правилу.
Pixel (picture element - элемент рисунка) - минимальная единица изображения, цвет и яркость которой можно задать независимо от остального изображения.
В соответствии с матричным принципом строятся изображения, выводимые на принтер, отображаемые на экране дисплея, получаемые с помощью сканера.
Качество изображения будет тем выше, чем "плотнее" расположены пиксели, то есть чем больше разрешающая способность устройства, и чем точнее закодирован цвет каждого из них.
Для черно-белого изображения код цвета каждого пикселя задается одним битом.
Если рисунок цветной, то для каждой точки задается двоичный код ее цвета.
Поскольку и цвета кодируются в двоичном коде, то если, например, вы хотите использовать 16-цветный рисунок, то для кодирования каждого пикселя вам потребуется 4 бита (16=24), а если есть возможность использовать 16 бит (2 байта) для кодирования цвета одного пикселя, то вы можете передать тогда 216 = 65536 различных цветов. Использование трех байтов (24 битов) для кодирования цвета одной точки позволяет отразить 16777216 (или около 17 миллионов) различных оттенков цвета - так называемый режим “истинного цвета” (True Color). Заметим, что это используемые в настоящее время, но далеко не предельные возможности современных компьютеров.
Кодирование звуковой информации.
Из курса физики вам известно, что звук - это колебания воздуха. По своей природе звук является непрерывным сигналом. Если преобразовать звук в электрический сигнал (например, с помощью микрофона), мы увидим плавно изменяющееся с течением времени напряжение.
Для компьютерной обработки аналоговый сигнал нужно каким-то образом преобразовать в последовательность двоичных чисел, а для этого его необходимо дискретизировать и оцифровать.
Можно поступить следующим образом: измерять амплитуду сигнала через равные промежутки времени и записывать полученные числовые значения в память компьютера.

Билет № 3

В истории развития цивилизации произошло несколько информационных революций - преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколению.

Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

Переход от механических и электрических средств преобразования информации к

электронным;

Миниатюризация всех узлов, устройств, приборов, машин;

Создание программно-управляемых устройств и процессов.

Сегодня мы переживаем пятую информационную революцию, связанную с формированием и развитием трансграничных глобальных информационно-телекоммуникационных сетей, охватывающих все страны и континенты, проникающих в каждый дом и воздействующих одновременно и на каждого человека в отдельности, и на огромные массы людей.

Наиболее яркий пример такого явления и результат пятой революции - Интернет. Суть этой революции заключается в интеграции в едином информационном пространстве по всему миру программно-технических средств, средств связи и телекоммуникаций, информационных запасов или запасов знаний как единой информационной телекоммуникационной инфраструктуры, в которой активно действуют юридические и физические лица, органы государственной власти и местного самоуправления. В итоге неимоверно возрастают скорости и объемы обрабатываемой информации, появляются новые уникальные возможности производства, передачи и распространения информации, поиска и получения информации, новые виды традиционной деятельности в этих сетях.

Информационное общество - концепция постиндустриального общества; новая историческая фаза развития цивилизации, в которой главными продуктами производства являются информация и знания. Отличительными чертами информационного общества являются:
- увеличение роли информации и знаний в жизни общества;
- возрастание доли информационных коммуникаций, продуктов и услуг в валовом внутреннем продукте;
- создание глобального информационного пространства, обеспечивающего (а) эффективное информационное взаимодействие людей, (б) их доступ к мировым информационным ресурсам и (в) удовлетворение их потребностей в информационных продуктах и услугах.

Билет № 11

Графом называется набор точек (эти точки называются вершинами), некоторые из которых объявляются смежными (или соседними). Считается, что смежные вершины соединены между собой ребрами (или дугами).

Таким образом, ребро определяется парой вершин. Два ребра, у которых есть общая вершина, также называются смежными (или соседними).

Граф называется ориентированным (или орграфом) ,если некоторые ребра имеют направление. Этоозначает, что в орграфе некоторая вершина может быть соединена с другой вершиной, а обратного соединения нет. Геометрически граф часто изображают точками плоскости, причем соседние вершины соединены дугами (для орграфа некоторые дуги имеют направление, что обычно отмечают стрелкой).

Помимо этого, в теории графов рассматриваются также мультиграфы – это такие графы, в которых могут быть петли (т. е. некоторая вершина соединена сама с собой ребром) или некоторые пары вершины могут быть соединены между собой несколькими ребрами.

Маршрут в графе – это последовательность соседних (смежных) вершин. Ясно, что можно определить маршрут и как последовательность смежных ребер (в этом случае ребра приобретают направление ). Заметим, что в маршруте могут повторяться вершины, но не ребра. Маршрут называется циклом , если в нем первая вершина совпадает с последней.

Путь в графе (иногда говорят простой путь) – это маршрут без повторения вершин (а значит, и ребер).

Контур – это цикл без повторения вершин, за исключением первой вершины, совпадающей с последней.

Последовательности вершин (рис. 1): 1–2–3–4–2–5 не простой путь, а маршрут; последовательности 1–2–3–4–7–5 и 1–2–5 – простые пути; 1–2–3–4–2–5–6–1 –это цикл (но не контур); 1–2–5–6–1 – это контур.

Если имеется некоторый маршрут из вершины t в вершину s, заданный в виде последовательности ребер, которые в этом случае приобрели направление, и если в этот маршрут входит ребро, соединяющее вершины (i , j ), то это ребро по отношению к вершине i называют иногда прямой дугой, а по отношению к вершине j – обратной дугой (или обратным ребром).

Граф называется связным , если любые две его вершины можно соединить маршрутом (или путем). На рис. 1 изображен связный граф.

Ребро, при удалении которого граф перестает быть связным, иногда называют мостом или перешейком .

Следующее определение имеет смысл только для графов или мультиграфов без петель (но не для орграфов).

Степень вершины – это число ребер, входящих в эту вершину. Вершина называется висячей , если ее степень равна единице.

Лемма 1 . Если степень всех вершин в графе больше или равна двум, то граф обязательно содержит контур.

Билет №13

Релейно-контактные схемы (их часто называют переключательными схемами) широко используются в технике автоматического управления.

Под переключательной схемой понимают схематическое изображение некоторого устройства, состоящее из следующих элементов:

1) переключателей , которыми могут быть механические устройства, электромагнитные реле, полупроводники и т.д.;

2) соединяющие их проводники ;

3) входы в схему и выходы из нее (клеммы, на которые подается электрическое напряжение). Они называются полюсами.

Простейшая схема содержит один переключатель Р и имеет один вход А и один выход В . Переключателю Р поставим в соответствии высказывание р , гласящее: - “Переключатель Р замкнут ”. Если р истинно, то импульс, поступающий на полюс А , может быть снят на полюсе В без потери напряжения, то есть схема пропускает ток. Если р ложно, то переключатель разомкнут и схема тока не проводит. Таким образом, если принять во внимание не смысл высказывания, а только его значение, то можно считать, что любому высказыванию может быть поставлена в соответсвие переключательная схема с двумя полюсами (двухполюсная схема).

Тогда РКС для данной формулы имеет вид:

Пример 2. Упростить РКС:

Решение. Составим по данной РКС формулу (функцию проводимости) и упростим ее:

(к последним двум слагаемым применили закон поглощения).

Тогда упрощенная схема выглядит так:

Своё дальнейшее развитие теория информации получила в работах Клода Шеннона, американского инженера и математика (1916 – 2001). Шеннон является одним из создателей математической теории информации. Его основные труды посвящены теории релейно-контактных схем, математической теории связи, кибернетике. К. Шеннон изучал вопросы передачи информации в телеграфии, телефонии или радиовещании в виде сигналов электромагнитных колебаний. Одна из задач, которую ставил перед собой К. Шеннон, заключалась в том, чтобы определить систему кодирования, позволяющую оптимизировать скорость и достоверность передачи информации. Так как в годы войны он служил в шифровальном отделе, где занимался разработкой криптографических систем, то это позже помогло ему открыть методы кодирования с коррекцией ошибок. В своих работах 1948-1949 годов К. Шеннон определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу количества информации принял то, что впоследствии назвали битом (bit).

Для дальнейшего изложения необходимо использовать некоторые понятия теории вероятности: случайное событие, опыт, вероятность события, случайная величина. В окружающем нас мире происходят различные события, причём мы можем интуитивно, основываясь на опыте, оценивать одни из них как более возможные, чем другие. Случайным называют событие, которое может наступить или не наступить в результате некоторого испытания, опыта или эксперимента. Будем обозначать события заглавными буквами A, B, C и т.д. Количественная мера возможности наступления некоторого события A называется его вероятностью и обозначается как p(A), p – от английского probability. Чем более возможно наступление случайного события, тем больше его вероятность: если A более возможно чем B, то p(A) > p(B). Вводится понятие достоверного события – событие, которое обязательно наступит. Это событие обозначают W и полагают, что его вероятность p(W) = 1. Невозможным называют событие, которое никогда не произойдёт. Его обозначают Æ и полагают, что его вероятность p(Æ) = 0. Для вероятностей всех остальных событий A выполняется неравенство p(Æ) < p(A) < p(W), или 0 < p(A) < 1.

Для событий вводится понятие суммы и произведения. Сумма событий A+B – это событие, которое состоит в наступлении события A или В. Произведение событий A*B состоит в одновременном наступлении события A и B. События A и B несовместны , если они не могут наступить вместе в результате одного испытания. Вероятность суммы несовместных событий равна сумме их вероятностей. Если А и В несовместные события, то p(A+B) = p(A) + p(B).


События A1, A2, A3, …An образуют полную группу , если в результате опыта обязательно наступит хотя бы одно из них. Если события A1, A2, A3, …An попарно несовместны и образуют полную группу, то сумма их вероятностей p1+p2+p3+ …. pn =1. Если они при этом ещё и равновероятны, то вероятность каждого равна p = 1/n , где n – число событий. Вероятность события определяется как отношение числа благоприятных событию исходов опыта к общему числу исходов. Частота события – эмпирическое приближение его вероятности. Она вычисляется в результате проведения серии опытов как отношение числа опытов, в которых событие наступило к общему числу опытов. При большом числе опытов (испытаний) частота события стремится к его вероятности.

К. Шеннон, используя подход Р. Хартли, обратил внимание на то, что при передаче словесных сообщений частота (вероятность) использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие - редко.

Рассмотрим алфавит A m состоящий из m символов. Обозначим через p i вероятность (частоту) появления i-ого символа в любой позиции передаваемого сообщения, состоящего из n символов. Один i – ый символ алфавита несёт количество информации равное -Log 2 (p i). Перед логарифмом стоит «минус» потому, что количество информации величина неотрицательная, а Log 2 (x) <0 при 0

На месте каждого символа в сообщении может стоять любой символ алфавита A m ; количество информации, приходящееся на один символ сообщения, равно среднему значению информации по всем символам алфавита A m:

Общее количество информации, содержащееся в сообщении из n символов равно:

Если все символы алфавита A m появляются с равной вероятностью, то все p i = p. Так как Sр i = 1, то p = 1/m.

Формула (3.2) в случае, когда все символы алфавита равновероятны, принимает вид

Вывод: формула Шеннона (3.2) в случае, когда все символы алфавита равновероятны, переходит в формулу Хартли (2.2).

В общем случае количество энтропии H произвольной системы X (случайной величины), которая может находиться в m различных состояниях x 1 , x 2 , … x m c вероятностями p 1 , p 2 , … p m , вычисленное по формуле Шеннона, равно

Напомним, что p 1 + p 2 + … +p m = 1. Если все p i одинаковы, то все состояния системы X равновероятны; в этом случае p i = 1/m, и формула (3.3) переходит в формулу Хартли (2.5): H(X) = Log 2 (m).

Замечание. Количество энтропии системы (случайной величины) Х не зависит от того, в каких конкретно состояниях x 1 , x 2 , … x m может находиться система, но зависит от числа m этих состояний и от вероятностей p 1 , p 2 , … p m , с которыми система может находиться в этих состояниях. Это означает, что две системы, у которых число состояний одинаково, а вероятности этих состояний p 1 , p 2 , … p m равны (с точностью до порядка перечисления), имеют равные энтропии.

Теорема. Максимум энтропии H(X) достигается в том случае, когда все состояния системы равновероятны. Это означает, что

Американский инженер Р. Хартли в 1928 г. процесс получения информации рассматривал как выбор одного сообщения из конечного наперёд заданного множества из N равновероятных сообщений, а количество информации I , содержащееся в выбранном сообщении, определял как двоичный логарифм N .

Формула Хартли:

I = log2N.

Допустим, нужно угадать одно число из набора чисел от единицы до ста. По формуле Хартли можно вычислить, какое количество информации для этого требуется: I = log2100 > 6,644. Таким образом, сообщение о верно угаданном числе содержит количество информации, приблизительно равное 6,644 единицы информации.

Приведем другие примеры равновероятных сообщений :

1. при бросании монеты: «выпала решка» , «выпал орел» ;

2. на странице книги: «количество букв чётное» , «количество букв нечётное» .

Определим теперь, являются ли равновероятными сообщения «первой выйдет из дверей здания женщина» и «первым выйдет из дверей здания мужчина» . Однозначно ответить на этот вопрос нельзя . Все зависит от того, о каком именно здании идет речь. Если это, например, станция метро, то вероятность выйти из дверей первым одинакова для мужчины и женщины, а если это военная казарма, то для мужчины эта вероятность значительно выше, чем для женщины.

Для задач такого рода американский учёный Клод Шеннон предложил в 1948 г. другую формулу определения количества информации, учитывающую возможную неодинаковую вероятность сообщений в наборе .

Формула Шеннона:

I = - (p 1log2p 1 + p 2 log2p 2 +... + p N log2pN ),


где pi - вероятность того, что именно i -е сообщение выделено в наборе из N сообщений.

Легко заметить, что если вероятности p 1, ...,pN равны, то каждая из них равна 1/N , и формула Шеннона превращается в формулу Хартли.

Клод Шеннон определил информацию , как снятую неопределенность . Точнее сказать, получение информации - необходимое условие для снятия неопределенности. Неопределенность возникает в ситуации выбора. Задача, которая решается в ходе снятия неопределенности – уменьшение количества рассматриваемых вариантов (уменьшение разнообразия), и в итоге выбор одного соответствующего ситуации варианта из числа возможных. Снятие неопределенности дает возможность принимать обоснованные решения и действовать. В этом управляющая роль информации.

Представьте, что вы зашли в магазин и попросили продать вам жевательную резинку. Продавщица, у которой, скажем, 16 сортов жевательной резинки, находится в состоянии неопределенности. Она не может выполнить вашу просьбу без получения дополнительной информации. Если вы уточнили, скажем, - «Orbit», и из 16 первоначальных вариантов продавщица рассматривает теперь только 8, вы уменьшили ее неопределенность в два раза (забегая вперед, скажем, что уменьшение неопределенности вдвое соответствует получению 1 бита информации ). Если вы, не мудрствуя лукаво, просто указали пальцем на витрине, - «вот эту!», то неопределенность была снята полностью. Опять же, забегая вперед, скажем, что этим жестом в данном примере вы сообщили продавщице 4 бита информации.

Ситуация максимальной неопределенности предполагает наличие нескольких равновероятных альтернатив (вариантов), т.е. ни один из вариантов не является более предпочтительным. Причем, чем больше равновероятных вариантов наблюдается, тем больше неопределенность, тем сложнее сделать однозначный выбор и тем больше информации требуется для этого получить. Для N вариантов эта ситуация описывается следующим распределением вероятностей: {1/N ,1/N , …,1/N }.

Минимальная неопределенность равна 0 , т.е. эта ситуация полной определенности , означающая что выбор сделан, и вся необходимая информация получена. Распределение вероятностей для ситуации полной определенности выглядит так: {1, 0, …0}.

Величина, характеризующая количество неопределенности в теории информации обозначается символом H и имеет название энтропия , точнееинформационная энтропия .

Энтропия (H ) – мера неопределенности , выраженная в битах. Так же энтропию можно рассматривать как меру равномерности распределения случайной величины.

Рис. 3.4 Поведение энтропии для случая двух альтернатив

На рис. 3.4 показано поведение энтропии для случая двух альтернатив, при изменении соотношения их вероятностей (P , (1-P )).

Максимального значения энтропия достигает в данном случае тогда, когда обе вероятности равны между собой и равны 1/2, нулевое значение энтропии соответствует случаям (P 0=0, P 1=1) и (P 0=1, P 1=0).

Количество информации I и энтропия H характеризуют одну и ту же ситуацию, но с качественно противоположенных сторон. I – это количество информации, которое требуется для снятия неопределенности H. По определению Леона Бриллюэна информация есть отрицательная энтропия (негэнтропия ) .

Когда неопределенность снята полностью, количество полученной информации I равно изначально существовавшей неопределенности H .

При частичном снятии неопределенности, полученное количество информации и оставшаяся неснятой неопределенность составляют в сумме исходную неопределенность. Ht + It = H (рис. 3.5).

Рис. 3.5 Связь между энтропией и количеством информации

По этой причине, формулы, которые будут представлены ниже для расчета энтропии H являются и формулами для расчета количества информации I , т.е. когда речь идет о полном снятии неопределенности , H в них может заменяться на I .

В общем случае , энтропия H и количество получаемой в результате снятия неопределенности информации I зависят от исходного количества рассматриваемых вариантов N и априорных вероятностей реализации каждого из них P: {p 0,p 1, …,pN- 1}, т.е. H=F (N ,P ). Расчет энтропии в этом случае производится по формуле Шеннона , предложенной им в 1948 году в статье «Математическая теория связи».

В частном случае , когда все варианты равновероятны , остается зависимость только от количества рассматриваемых вариантов, т.е. H=F (N ). В этом случае формула Шеннона значительно упрощается и совпадает с формулой Хартли , которая впервые была предложена американским инженером Ральфом Хартли в 1928 году, т.е. на 20 лет раньше.

Формула Шеннона имеет следующий вид:

Знак минус в формуле (2.1) не означает, что энтропия – отрицательная величина. Объясняется это тем, чтоpi £ 1 по определению, а логарифм числа меньшего единицы - величина отрицательная. По свойству логарифма, поэтому эту формулу можно записать и во втором варианте, без минуса перед знаком суммы.

Выражение интерпретируется как частное количество информации It , получаемое в случае реализации i -ого варианта. Энтропия в формуле Шеннона является средней характеристикой – математическим ожиданием распределения случайной величины {I 0,I 1, …,I N- 1}.

Приведем пример расчета энтропии по формуле Шеннона. Пусть в некотором учреждении состав работников распределяется так: 3/4 - женщины, 1/4 - мужчины. Тогда неопределенность, например, относительно того, кого вы встретите первым, зайдя в учреждение, будет рассчитана рядом действий, показанных в табл. 3.1.

Таблица 3.1

pi 1/pi Ii= log2(1/pi ),бит pi* log2(1/pi ),бит
Ж 3/4 4/3 log2(4/3)=0,42 3/4 * 0,42=0,31
М 1/4 4/1 log2(4)=2 1/4 * 2=0,5
å H= 0,81бит

Мы уже упоминали, что формула Хартли – частный случай формулы Шеннона для равновероятных альтернатив.

Подставив в формулу (2.1) вместо pi его (в равновероятном случае не зависящее от i )значение, получим:

Таким образом, формула Хартли выглядит очень просто:

Из нее явно следует, что чем больше количество альтернатив (N ), тем больше неопределенность (H ). Логарифмирование по основанию 2 приводит количество вариантов к единицам измерения информации – битам. На рис.3.6 представлена зависимость энтропии от количества равновероятных вариантов выбора.

Рис. 3.6 Зависимость энтропии от количества равновероятных вариантов выбора (равнозначных альтернатив)

Для решения обратных задач, когда известна неопределенность (H ) или полученное в результате ее снятия количество информации (I ) и нужно определить какое количество равновероятных альтернатив соответствует возникновению этой неопределенности, используют обратную формулу Хартли, которая выглядит еще проще:

Например, если известно, что в результате определения того, что интересующий нас Коля Иванов живет на втором этаже, было получено 3 бита информации, то количество этажей в доме можно определить по формуле (2.3), как N= 23= 8этажей.

Если же вопрос стоит так: «В доме 8 этажей, какое количество информации мы получили, узнав, что интересующий нас Коля Иванов живет на втором этаже?», нужно воспользоваться формулой (2.2): I = log2(8) = 3 бита.

До сих пор мы приводили формулы для расчета энтропии (неопределенности) H , указывая, что H в них можно заменять на I , потому что количество информации, получаемое при полном снятии неопределенности некоторой ситуации, количественно равно начальной энтропии этой ситуации.

Но неопределенность может быть снята только частично, поэтому количество информации I , получаемой из некоторого сообщения, вычисляется как уменьшение энтропии, произошедшее в результате получения данного сообщения .

Для равновероятного случая , используя для расчета энтропии формулу Хартли, получим:

Второе равенство выводится на основании свойств логарифма. Таким образом, в равновероятном случае I зависит от того, во сколько раз изменилось количество рассматриваемых вариантов выбора (рассматриваемое разнообразие).

Исходя из (3.5) можно вывести следующее:

Если, то - полное снятие неопределенности, количество полученной в сообщении информации равно неопределенности, которая существовала до получения сообщения.

Если, то - неопределенности не изменилась, следовательно, информации получено не было.

Если, то => ,

если, то => .

Т.е. количество полученной информации будет положительной величиной, если в результате получения сообщения количество рассматриваемых альтернатив уменьшилось, и отрицательной, если увеличилось.

Если количество рассматриваемых альтернатив в результате получения сообщения уменьшилось вдвое, т.е., то I =log2(2)=1бит. Другими словами, получение 1 бита информации исключает из рассмотрения половину равнозначных вариантов.

Рассмотрим в качестве примера опыт с колодой из 36 карт (рис.3.7).

Рис. 3.7 Иллюстрация к опыту с колодой из 36-ти карт

Пусть некто вынимает одну карту из колоды. Нас интересует, какую именно из 36 карт он вынул. Изначальная неопределенность, рассчитываемая по формуле (3.2), составляет H= log2(36)@5,17бит . Вытянувший карту сообщает нам часть информации. Используя формулу (3.5), определим, какое количество информации мы получаем из этих сообщений:

Вариант A. “Это карта красной масти”.

I =log2(36/18)=log2(2)=1бит (красных карт в колоде половина, неопределенность уменьшилась в 2 раза).

Вариант B. “Это карта пиковой масти”.

I =log2(36/9)=log2(4)=2 бита (пиковые карты составляют четверть колоды, неопределенность уменьшилась в 4 раза).

Вариант С. “Это одна из старших карт: валет, дама, король или туз”.

I =log2(36)–log2(16)=5,17-4=1,17 бита (неопределенность уменьшилась больше чем в два раза, поэтому полученное количество информации больше одного бита).

Вариант D. “Это одна карта из колоды".

I =log2(36/36)=log2(1)=0 бит (неопределенность не уменьшилась - сообщение не информативно).

Вариант E. “Это дама пик".

I =log2(36/1)=log2(36)=5,17 бит (неопределенность полностью снята).

Задача 1. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика, если в непрозрачном мешочке находится 50 белых, 25 красных, 25 синих шариков?

Решение .

1) всего шаров 50+25+25=100

2) вероятности шаров 50/100=1/2, 25/100=1/4, 25/100=1/4

3)I = -(1/2 log21/2 + 1/4 log21/4 + 1/4 log21/4) = -(1/2(0-1) +1/4(0-2) +1/4(0-2)) = =1,5 бит

Задача 2. В корзине лежит 16 шаров разного цвета. Сколько информации несет сообщение, что достали белый шар?

Решение . Т.к. N = 16 шаров, то I = log2 N = log2 16 = 4 бит.

Задача 3. В корзине лежат черные и белые шары. Среди них18 черных шаров. Сообщение о том, что достали белый шар, несет 2 бита информации. Сколько всего шаров в корзине?

1) 18 2) 24 3) 36 4)48

Решение . Найдем по формуле Шеннона вероятность получения белого шара: log2N=2, N=4, следовательно, вероятность получения белого шара равна 1/4 (25%), а вероятность получения черного шара соответственно 3/4(75%). Если 75% всех шариков черные, их количество 18, тогда 25% всех шариков белые, их количество (18*25)/75=6.

Осталось найти количество всех шариков в корзине 18+6=24.

Ответ: 24 шарика.

Задача 4. В некоторой стране автомобильный номер длиной 5 символов составляется из заглавных букв (всего используется 30 букв) и десятичных цифр в любом порядке. Каждый символ кодируется одинаковым и минимально возможным количеством бит, а каждый номер – одинаковым и минимально возможным количеством байт. Определите объем памяти, необходимый для хранения 50 автомобильных номеров.

1) 100 байт 2) 150 байт 3) 200 байт 4)250 байт

Решение . Количество символов используемых для кодирования номера составляет: 30 букв + 10 цифр = 40 символов. Количество информации несущий один символ равен 6 бит (2I=40, но количество информации не может быть дробным числом, поэтому берем ближайшую степень двойки большую количества символов 26=64).

Мы нашли количество информации, заложенное в каждом символе, количество символов в номере равно 5, следовательно, 5*6=30 бит. Каждый номер равен 30 битам информации, но по условию задачи каждый номер кодируется одинаковым и минимально возможным количеством байт, следовательно, нам необходимо узнать, сколько байт в 30 битах. Если разделить 30 на 8 получится дробное число, а нам необходимо найти целое количество байт на каждый номер, поэтому находим ближайший множитель 8-ки, который превысит количество бит, это 4 (8*4=32). Каждый номер кодируется 4 байтами.

Для хранения 50 автомобильных номеров потребуется: 4*50=200 байт.

Выбор оптимальной стратегии в игре «Угадай число». На получении максимального количества информации строится выбор оптимальной стратегии в игре «Угадай число», в которой первый участник загадывает целое число (например, 3) из заданного интервала (например, от 1 до 16), а второй - должен «угадать» задуманное число. Если рассмотреть эту игру с информационной точки зрения, то начальная неопределенность знаний для второго участника составляет 16 возможных событий (вариантов загаданных чисел).

При оптимальной стратегии интервал чисел всегда должен делиться пополам, тогда количество возможных событий (чисел) в каждом из полученных интервалов будет одинаково и отгадывание интервалов равновероятно. В этом случае на каждом шаге ответ первого игрока («Да» или «Нет») будет нести максимальное количество информации (1 бит).

Как видно из табл. 1.1, угадывание числа 3 произошло за четыре шага, на каждом из которых неопределенность знаний второго участника уменьшалась в два раза за счет получения сообщения от первого участника, содержащего 1 бит информации. Таким образом, количество информации, необходимое для отгадывания одного из 16 чисел, составило 4 бита.

Контрольные вопросы и задания

1. Априори известно, что шарик находится в одной из трех урн: А, В или С. Определите, сколько бит информации содержит сообщение о том, что он находится в урне В.

Варианты: 1бит, 1,58бита, 2бита, 2,25бита.

2. Вероятность первого события составляет 0,5, а второго и третьего 0,25. Чему для такого распределения равна информационная энтропия. Варианты: 0,5бита, 1 бит, 1,5бита, 2бита, 2,5бита, 3бита.

3. Вот список сотрудников некоторой организации:

Определите количество информации, недостающее для того, чтобы выполнить следующие просьбы:

Пожалуйста, позовите к телефону Иванову.

Меня интересует одна ваша сотрудница, она 1970 года рождения.

4. Какое из сообщений несет больше информации:

· В результате подбрасывания монеты (орел, решка) выпала решка.

· На светофоре (красный, желтый, зеленый) сейчас горит зеленый свет.

· В результате подбрасывания игральной кости (1, 2, 3, 4, 5, 6) выпало 3 очка.


Close